If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x-18=0
a = 4; b = 24; c = -18;
Δ = b2-4ac
Δ = 242-4·4·(-18)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{6}}{2*4}=\frac{-24-12\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{6}}{2*4}=\frac{-24+12\sqrt{6}}{8} $
| -3(y+8)=7y-44 | | 3h+1=1+3h | | 22(y)=-2 | | 5-3y=-11 | | 5(x+2)–2(x+1)=3x+1 | | 1.75h+5=4 | | -3v-3=9(v+9) | | 8/3x=7/9 | | 4x+26=78+-2 | | 5/8p-3=2 | | 1/6b=2/3 | | 16x^2+24=-9 | | 1/6x=120 | | 8x+35=x+7 | | 0000.01000d-000.00000001001=0 | | 0.6m+5=67.4 | | 9(x+4)=11(x-2 | | D=196+-16t | | n^2-2n-378=0 | | 6(c+4)−c=4 | | 6/10=x/18 | | 5(2x+1)=-5(4x-4)-2x | | -10=x-31 | | 11x+17x-9+1=-7x+1-9 | | -3x+6x-8=3(x-5)-3 | | 8t=6+8t | | 369823498y+386045836=87435 | | 8k^+14k+3=0 | | 5(4x-1)+2(14-5x)-3(3x+1)=-1 | | x/5=-5+x/2 | | 2(m+5)-m=4 | | 4=2/7y |